PHYSICS

0625/33
Paper 3 Core Theory
October/November 2019
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

B marks	are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.
M marks	are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
C marks	are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.
A marks	A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored. A marks are commonly awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. An A mark following an M mark is a dependent mark.
Brackets ()	Brackets around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. $10(\mathrm{~J})$ means that the mark is scored for 10 , regardless of the unit given.
Underlining	Underlining indicates that this must be seen in the answer offered, or something very similar.
OR / or	This indicates alternative answers, any one of which is satisfactory for scoring the marks.
e.e.o.o.	This means "each error or omission".
o.w.t.t.e.	This means "or words to that effect".
Ignore	This indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection / refraction / diffraction or thermistor / transistor / transformer.

Not/NOT This indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate, i.e. right plus wrong penalty applies.
ecf meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions. This indicates that if a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate from being penalised more than once for a particular mistake, but only applies to marks annotated ecf.

Significant Answers are normally acceptable to any number of significant figures ≥ 2. Any figures exceptions to this general rule will be specified in the mark scheme.

Arithmetic Deduct one mark if the only error in arriving at a final answer is clearly an arithmetic one. Regard a power-of-ten error as an errors

Transcription errors

Fractions

Crossed out work arithmetic error.

Deduct one mark if the only error in arriving at a final answer is because previously errors calculated data has clearly been misread but used correctly.

Allow these only where specified in the mark scheme.

Use of NR
Work which has been crossed out and not replaced but can easily be read, should be marked as if it had not been crossed out.

Use this if the answer space for a question is completely blank or contains no readable words, figures or symbol space for a question is completely blank or contains no readable words, figures or symbols.

Question	Answer	Marks
$1(\mathrm{a})$	$226.50-82.10$ OR 3:46.5(0) - 1:22.1(0) OR 2 min 24.4(s) $144.4(0)(\mathrm{s})$	C1
A1		
1(b)	start stopwatch as LED lights owtte count large number of flashes i.e. $>=10$ stop stopwatch on nth lighting of LED AND $\mathrm{n}>=1$ divide time on stopwatch by n	B4

Question	Answer	Marks
2(a)	```speed = (total) distance \div time in any form 12\div1.5 8 (km/h)```	C1 C1 A1
2(b)(i)	$\begin{aligned} & \text { distance }=\text { area under graph } \text { OR area }=1 / 2 \times \text { base } \times \text { height } \\ & 1 / 2 \times 3.0 \times 4.0 \\ & 6(.0)(\mathrm{m}) \end{aligned}$	C1 C1 A1
2(b)(ii)	(between) 10(.0) and 12(.0) steepest section of graph / greatest gradient	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
2(c)	$\begin{aligned} & \mathrm{W}=\mathrm{mg} \text { in any form } \\ & 72 \times 10 \\ & 720(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$

Question	Answer	Marks
3(a)(i)	$8.0(\mathrm{~N})$ AND forwards / to the left	B1
3(a)(ii)	accelerating forwards / to the left	B1
3(b)	greater drag force / air resistance OR lower thrust owtte	B1

Question	Answer	Marks
4(a)(i)	(gravitational) potential energy	B1
4(a)(ii)	2nd (bag) as it has a greater load / force / weight (moved through same distance)	B1
4(a)(iii)	time (taken) (vertical) height (raised)/ distance	B1
4(b)	B	B1
	A	B3
	D	
	C	

Question	Answer	Marks
5(a)	1. melting 2. boiling/evaporation 3. freezing / solidification	B1 B1 B1
5(b)	Any three from: (evaporation -) most energetic molecules escape from surface of liquid average KE of molecules remaining in liquid decreases temperature of liquid decreases energy transfers from water (on bench) to liquid (so water cools / freezes)	B3

Question	Answer	Marks
$6(\mathrm{a})($ (i)	vertical arrow pointing down AND up	B1
$6(\mathrm{a})$ (ii)	$(10.0 \div 4=) 2.5(\mathrm{~cm})$	B1
$6(\mathrm{a})$ (iii)	more waves / waves closer together / shorter wavelength	B1
$6(\mathrm{~b})($ (i)	light AND radio	B1
$6(\mathrm{~b})$ (ii)	sound OR ultrasound OR longitudinal	B1

Question		Answer	Marks
7(a)	(degrees) celsius $\mathbf{O R}^{\circ} \mathrm{C}$ volume		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
7(b)	Lower $0^{\circ} \mathrm{C}$ (water) freezes OR turns to ice Upper $100^{\circ} \mathrm{C}$ (water) boils		B1 B1 B1 B1

Question	Answer	Marks
8(a)	normal	B1
8(b)	angle of incidence: N angle of reflection: S angle of refraction: P	B1
B1		
B1		

Question	Answer	Marks
9(a)(i)	either N and N OR S and S facing each other	B1
9(a)(ii)	repel / repulsion	B1
9(a)(iii)	attracted OR steel bar moves towards magnet A	B1
9(b)(i)	prediction: one end attracts AND the other end repels reason: like poles repel OR unlike poles attract	B1
9(b)(ii)	they attract (because) steel forms a permanent magnet owtte	B1 B1
9(b)(iii)	sorting scrap metal OR doorbell OR relay OR (electric) motor OR circuit breakers	B1

Question	Answer	Marks
$10(\mathrm{a})$	$\underline{\text { thermistor }}$	B1
$10(\mathrm{~b})(\mathrm{i})$	$2000(\Omega)$	B1
$10(\mathrm{~b})(\mathrm{ii})$	$(I=) \mathrm{V} \div \mathrm{R}$ OR $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ in any form $12 \div 800$ $0.015(\mathrm{~A})$	C1

Question	Answer	Marks
11(a)(i)	current is in one direction	B1
11(a)(ii)	symbols for two cells connected in series symbol for a switch	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
11(b)(i)	$\underline{\text { motor }}$	B1
11(b)(ii)	any two from: increasing number of turns on coil increasing the current (in the coil) increasing the strength of the magnetic field	B2

Question	Answer	Marks
12(a)(i)	same proton number OR same number of protons OR same atomic number OR same Z	B1
12(a)(ii)	different nucleon number OR different number of neutrons OR different mass number OR different A	B1
12(b)	alpha, beta and gamma OR symbols	B2
12(c)	top line: electrons - positive(ly) bottom line: electrons - negative(ly)	B2
12(d)	two half-lives indicated 2.0×10^{10} (atoms remain)	C1

